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ac-driven phase-dependent directed diffusion

Oleg Yevtushenko, Sergej Flach, and Klaus Richter
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 13 August 1999!

We study directed diffusion of a particle in a periodic symmetric potential under the influence of a time-
periodic external field. The field lowers the symmetry of the phase space flow which results in directed
diffusion even if the potential and the field are reflection symmetric. We analyze the interplay between broken
symmetry and dynamical chaos.

PACS number~s!: 05.45.-a, 05.60.Cd, 05.45.Ac
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Nonlinear transport processes in a spatially periodic
tential U(x12p)5U(x) are of interest for such topics a
stochastic diffusion in nonlinear systems@1#, transport in
randomly driven systems@2#, and in solid state physics@3#,
to name a few.Chaotic transportin a nonlinear dynamica
system implies the possibility to travel in phase space if
initial conditions of the particle belong to the chaotic layer
the system. The chaotic layer can appear in some vicinit
the separatrix of the unperturbed motion when a perturba
is applied to an integrable system. A weak time-perio
field E(t) can serve as such a perturbation generating a
riety of stochastic diffusive regimes in spatially periodic sy
tems @4,5#. A prominent example for directed transport
such systems isratchet transport, i.e., a ~colored! noise-
induced macroscopic current in a periodic potential with
without space reflection symmetry. Ratchet transport was
tensively studied for different situations, including chao
dissipative systems and overdamped regimes@6#. Possible
experimental manifestations of ratchet diffusion can be
pected, e.g., for the phase diffusion in Josephson junct
and the motion of proteins along biopolymers. Recently,
effect of an ac field on directed diffusion in reflection sym
metric and nonsymmetric periodic potentials was also st
ied in Ref.@7#. There it has been shown that the breaking
the time reflection symmetry of the forceE(t) plays the
same role as the breaking of the space reflection symmet
the potentialU(x) leading to directed diffusion controlled b
an ac field.

In this paper we study phase-dependent directed trans
in systems without breaking reflection symmetries in time
space. This transport mechanism results from the spe
symmetry of the equations of motion combined with t
presence of nonlinear processes. We investigate the sim
case of the harmonically driven mathematical pendulum w
the Hamiltonian

H5p2/21U~x!2xE~ t !, U~x!5sin~x!,
~1!

E~ t !5e sin~vt1f!.

Here (x,p) are canonically conjugated dimensionless va
ables,e,v,f are, respectively, the amplitude, frequency, a
phase of the time-dependent field, which we consider to b
~strong! perturbation of the unperturbed motion of the pa
ticle in the potentialU(x). Eq. ~1! corresponds to a dipole
interaction between an oscillator and an external perturba
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field @1# in the long wave length limit. The combined actio
of the ac fieldE(t) and periodic potentialU(x) results in a
nonintegrable type of dynamics with either quasiperiodic
stochastic trajectories. Using the model Hamiltonian~1! we
show that the ac field lowers the symmetry of the dynami
system. This results in a phase-dependent directed diffus
even if the potentialU(x) and the fieldE(t) are reflection
symmetric. We will analyze the interplay between brok
symmetry and dynamical chaos.

Let us start with some unexpected results of numer
studies of Eq.~1!. Simulations were performed in the follow
ing way: take a large ensemble of initial conditions (N
;104) at t50 with energies randomly chosen in a thin lay
beyond the unperturbed separatrix, 12D,E(t50),1;D
!1, and coordinates uniformly distributed over the unit c
of the potential23p/2,x(t50),p/2. Thus all particles
would be trapped in the chosen cell for the unperturbed
namics. The ac field induces dynamical chaos allowing
an escape of the particles. The small value ofD must satisfy
the Chirikov overlap criterion so that~almost! all particles in
the ensemble perform stochastic motion@8#. Such a choice of
the initial positions presents a~quasi! microcanonical distri-
bution for the unperturbed dynamical system. Nonzero v
ues of D ensure better averaging. By means of numeri
integration of the equations of motion we obtain the avera
escape timest r andt l of a particle to the neighboring righ
and left cells of the potential. The averaging is perform
over the full ensemble with integration times being of t
order of 103 time units, which is much larger than the max
mum time to reach the neighboring cell. The results
shown in Fig. 1. We observe a substantial asymmetry of
particle flux to the right and to the left, respectively. Th
asymmetry indicates the existence of directed diffusion
the system. The asymmetry vanishes only for some spe
values of the phasef5fs1kp, wherek is an integer. For
small amplitudese,0.05 or for large frequenciesv.3, i.e.,
in the limit of a very narrow layer of the stochastic motio
we find fs→p/2.

To understand these results we start with the consid
ation of the limit of large energies, and neglect the poten
in zeroth order:U(x)50. The velocity of a particle in the ac
field then reads

V~ t !5C02e/v cos~vt1f!, C05^V~ t !& t , V~0!5V0 .
~2!
7215 ©2000 The American Physical Society



-

a

t
o

rg

-
v
l

pe

de-

r-
d

be

o

he
m

oc-

7216 PRE 61BRIEF REPORTS
Here ^•••& t means time averaging. It follows from Eq.~2!
that

C05V01e/v cos~f!. ~3!

Given a distribution of initial conditionsr(X0 ,V0) with
symmetryr(X,V)5r(X,2V), the mean time-averaged ve
locity per particle is not equal to zero:

V̄5e/v cos~f!. ~4!

The ac field lowers the previous symmetry of the phase sp
flow $1V0→2V0% into $1V0→2V0 ;f→2f1p% ~this is
one reason for the macroscopic transport observed in
short-time simulations in Fig. 1; we come back to the case
transport in a potential below!.

Next we study the case when the initial energy is la
compared to the potentialU(x):E05V0

2/21sin(X0).1. To
simplify the analytical calculations we putv@1 and assume
that the initial distribution is uniform in space:r(X,V)
5d(uVu2V0). After averaging we obtain

V̄.
p sgn@V01~e/v!cosf#uku

K~k21!
,

k25
1

2
1

V0
2

4 S 11
e cosf

V0v D 2

1sinS X01
esinf

v2 D >1, ~5!

V̂[^V̄&X0 ,V0
5

1

4pE0

2p

$V̄~1V0 ,X0!1V̄~2V0 ,X0!%dX0 .

~6!

HereK is the elliptic integral of first type. Avoiding cumber
some analytical formulas, numerically calculated average
locities V̂ for microcanonical ensemble with different initia
energiesE0 are presented in Fig. 2. The estimated up
boundary of the stochastic layer isEst.1.1. ForE0@Est the
function V̂(f) approaches the form of cosf. With decreas-

FIG. 1. Average escape timest r ,t l ~in scaled units! for the
hopping of a particle to the neighboring right and left cells of t
potentialU(x) as a function of the phasef of the ac field fore
50.175, v51.
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ing E0, the maximum value ofV̂max increases~see upper
inset!. It passes through a maximum and subsequently
creases with further loweringE0. This behavior is connected
to the sticking of a trajectory to the vicinity of the unpe
turbed hyperbolic fixed point. The numerically obtaine
symmetric phasefs defined through the equalityV̂(fs)
50, is p/2 at E0>Est ~see lower inset!.

The situation drastically changes whenE0 is crossing the
boundary of the chaotic part in phase space (E0,Est). After
crossing there is a nonzero probability for a trajectory to
trapped by partly destroyed KAM tori@1# as well as to travel
in arbitrary direction in the manner of Le´vy flights @4,11#.
These processes reduce the amplitudeV̂max. In addition, as
shown in the lower inset for a finite realization lengthT ~i.e.,
the time of averaging!, the symmetric pointfs is abruptly
shifted fromp/2:fsuE0<Est

5p/21df(E0). With increasing

time T one findsV̂max;1/T and the mean velocity tends t
zero for infiniteT. This is shown in Fig. 3. The power law

FIG. 2. Dependence of the mean velocityV̂ ~of the directed
current! on the phasef for different initial energiesE0 for e
50.15, v51. The insets show the alternation of the maximu

value of V̂ and of the symmetric phasefs while decreasingE0

toward the boundary of the stochastic layer atEst.1.1 for T
5150p.

FIG. 3. An example of the power law decay of the mean vel

ity ^V̄&x0
inside the stochastic layer (E0.1) with increasing the

time intervalT at fÞfs ;e50.15;v51.
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behavior reflects the superdiffusive nature of the motion
side the stochastic layers, i.e., it results from the fast ano
lous stochastic diffusion, which is analogous to the quasib
listic regime and does not obey usual laws of diffusi
motion @9#. Such a regime is possible in any time-depend
system having regions of bounded and unbounded motio
different sides of the unperturbed separatrix@4,10#. Simulta-
neously, a power law decay always implies the absenc
localization and the notion of a localization length is mea
ingless. The functionV̂max(T) tends slowly to zero with in-
creasingT; therefore the directed diffusion predicted can
detected for finite values ofT. Note that there are two com
petitive mechanisms of the long-time self-averaging ofV̂max
in the stochastic layer. The first one is connected to the
godicity and mixing of chaotic dynamics itself while the se
ond one results from the weak noise of numerical and
experiments. The role of noise is discussed below.

It is interesting to note that for a fixed value of the pha
f the escape time to the right or to the left is practica
independent on the amplitude of perturbation for 0.1,e
,0.4, implying that the probability for a trajectory to cro
the unperturbed separatrix is almost constant. This fact
mentioned in Ref.@10# and was attributed to the anomalo
diffusion in phase space. A detailed analysis of this pheno
enon is beyond the scope of the present paper.

The observed directed diffusion depends periodically
the phasef of the driving field. After additional averaging
over f the effect of a macroscopic current vanishes:

^V̂&f[0. ~7!

Here we discuss three important situations when this ave
ing occurs.

The first one corresponds to an average over initial tim
i.e., when we inject given particle distributions at rando
initial times. Averaging over initial times equals averagi
over the phase. However, if the injection times are correla
~e.g., the injection times are triggered and spaced by a m
tiple of the period of the field! then directed current will be
reinforced. Since even quasiperiodic injection tim
sequences will ultimately average over the phase, in rea
we simply need finite samples where traveling along
sample takes finite time.

The second example is a spatially inhomogeneous w
@11#, for instance,

E~ t !5e sin~kx2vt1f!. ~8!

If we consider two particles with same initial positions a
opposite velocities, the average velocity will still be nonze
However, if we consider a distribution of initial position
averaging over the initial positions equals averaging over
phase of the individual particle pairs:̂•••&x[^•••&f .
Again the specific asymmetry in the chaotic regime can
detected only for finite samples when the long wave limit
valid.

The third example of complete averaging is a noisy dr
ing force:

E~ t !5e sin~vt1f!1e1j~ t !, ~9!
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wherej(t) is a white noise with intensitye1 @12#. The noise
also induces an averaging over the phasef. The largere1
the faster is the averaging due to the noise. To avoid that,
characteristic time of the directed diffusiontD must be much
smaller than the time scale of the thermal diffusiontj . In a
sample of sizeL the simplest estimate thus reads

tD.L/V̂!tj . ~10!

Consequently,phase-dependent directed diffusion manife
itself only for finite samples on finite times.

To refine our explanation of the property~7!, let us return
to the question of the symmetry in the equations of moti
Given a trajectory

X~ t,X0 ,V0!, P~ t,X0 ,V0! ~11!

of system~1!, one more trajectory can be successively ge
erated by the transformations

t→2t: X~2t22f/v,X0 ,V0!, 2P~2t22f/v,X0 ,V0!.
~12!

The absolute value of the time-averaged velocity is the sa
for both trajectories. Forf5fs these trajectories@‘‘origi-
nal’’ ~11! and ‘‘generated’’~12!# would belong to the above
described microcanonical distribution and would cancel e
other. ForfÞfs the compensation of contributions from
different trajectories no longer takes place and we detect
rected transport. This is the main reason for the effects
scribed. We need further averaging overf in order to ensure
cancellation of the contributions coming from Eqs.~11! and
~12!. If we wish to overcome Eq.~7!, we have to break the
corresponding symmetry, e.g., by taking either an ac fi
without reflection symmetry:

E~ t !asym~x!5e$sin~vt1f!1besin~2@vt1f#1ne!%,

be,1; neÞ6pk/2 ~13!

or combining it with a potential without reflection symmet
@7#

U~x!asym5sin~x!1busin~2x1nu!,

bu,1, nuÞ6pk/2. ~14!

The case of the ac field and the potential without reflect
symmetry represents a deterministic counterpart to the
chastic ratchets@6,7#, where directed transport is not zero
spite of self-averaging over the phase due to the action
noisy force. A detailed study of the properties of the fie
~13! and of the potential~14! can be found in@13#.

There exist also examples of quantum particles in tig
binding potentials, for which directed currents do not van
after averaging over infinitely long time. Consider a tigh
binding Hamiltonian in semiclassical approximation

Htb52cos~p!2xE~ t !, ~15!

with the same fieldE(t) as in Eq.~1!. Equation~15! ac-
counts for a periodic potentialU(x) via the periodic disper-
sion relation of quasiparticles«(p)52cos(p) @3#. Since the
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Hamiltonian~15! corresponds to a nonlinear but complete
integrable system, we have an explicit expression for
velocity

ẋ[V~ t ![]Htb /]p5sin$p01e/v@cos~f!2cos~vt1f!#%,
~16!

^V~ t,1p0!1V~ t,2p0!& t /2

5J0~e/v!cos~p0!sin$e/v cos~f!%. ~17!

Assuming a Boltzmann distribution for the particlesFB
5const3exp@2«(p0)b# and integrating overp0, the aver-
aged current in the ballistic regime reads@3#

^ j & t52@nI1~b!/I 0~b!#J0~e/v!sin$e/vcos~f!%,

^^ j & t&f50. ~18!

Here b is the dimensionless inverse temperature,n is the
particles density,I 0,1 are the modified Bessel functions an
J0 is the Bessel function of zeroth order. Atf5p/2 we have
^ j & t50 as expected@3#. Note that directed currents in simila
systems~for fixed f5fs) have been also found due to d
namical chaos in the selfconsistent evolution or due to m
ing of different harmonics of the driving field@14,15#, while
the current in Eq.~18! is supported by regular dynamic
under the action of the one-harmonic field.

To summarize, we have studied directed diffusion in
spatially periodic symmetric potential under the action o
.
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symmetric time-periodic external field. We have shown th
the ac field leads to phase-dependent macroscopic tran
in finite samples by lowering the dynamical symmetry, ev
if the potential and the field themselves are reflection sy
metric. This flux is fully controlled by the phase of the a
field. For a given amplitude of the ac field the amplitude
the flux is maximized for particle energies closely above
unperturbed separatrix. We have also demonstrated tha
sufficiently short samples the dynamical asymmetry is a
plified due to chaos, leading to a shift in the phase val
where zero current occurs. The maximum of the mean ve
ity decays as inverse time.

An additionally applied~white! noise gives rise to aver
aging over the phase resulting in zero currents in the lo
time limit. However, for a finite sample@see Eq.~10!# one
can construct a source of colored noise, which would p
odically inject particles into the system. If the injection is
phase with the driving field, it would allow for an exper
mental observation. Moreover, additional breaking of spa
and/or time-reflection symmetry may counteract the s
averaging which otherwise leads to a vanishing mean ve
ity.
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